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Major Goals:  This proposal focused on subspace estimation in various modern big-data contexts, where data are 
massive, streaming, time-varying, and have missing, corrupted, and ill-conditioned data. In the final stages of the 
project, we also begun an exploration of nonlinear generalizations of subspaces, to provide models that can 
capture more interesting signal variation. 



We formulated our general problem as solving for a factored representation for a data matrix X= UV’, where 
columns of X are length n but X is rank r<n, given linear measurements from a measurement operator H. In this 
context we had five major goals:



1. Algorithms and theory for estimating U when X is ill-conditioned, i.e. the first and rth singular values have a large 
ratio, or when there is a low SNR, i.e. the r+1 to nth singular values are relatively large compared to the first r 
singular values. We also extended this in two new directions: a) clusters of data with different SNR levels, and b) 
data that are transformed by an unknown monotonic calibration function. 



2. Theory for estimating U with the natural Grassmannian incremental gradient descent algorithm when H is a 
compressive measurement operator. 



3. Algorithms and theory for the problem variant where we minimize the l1-norm cost instead of the Frobenius norm 
(robust PCA) or where we add a constraint that U should be sparse (sparse PCA). 



4. Applications in computer vision and Unifying convergence theory across these non-convex problems.



5. Our added final goal was to develop algorithms and theory for estimating three nonlinear models with missing 
and compressive measurements: single index models, variety models, and union of subspace models.

Accomplishments:  Goal 1) Subspace learning with ill conditioned, noisy data



Early in the grant period we developed PIMC, Polar Incremental Matrix Completion, which was the first online 
subspace learning algorithm that could handle ill-conditioned data. 



We have developed first of their kind mathematical guarantees for convergence of the natural stochastic gradient 
algorithm for subspace estimation. We have global convergence guarantees with full (not compressive) 
measurements and noisy measurements (see comments on compressive measurements below). For noisy 
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measurements we derived a weighted step size scheme that gradually shrinks the step as the estimated subspace 
converges to the true subspace. The intuition behind this strategy is that the noisy part will gradually dominate the 
residual, and so we hope to include less and less information from the projection residual to our estimates over 
time. While this approach has been used in practice by others, we provide the first theoretical understanding of why 
the approach leads to good results on this nonconvex objective. 



To the best of our knowledge, we are the first to study subspace estimation with heteroscedastic data, i.e. data with 
multiple noise levels, a very common messy data issue in real datasets. Our earlier results established precise 
formulas for the asymptotic behavior of PCA’s estimates of the principal components (or left singular vectors). We 
also confirmed through simulation that our formulas are an exact prediction of PCA’s performance when different 
data vectors have varying SNR levels. We continued this work in this final reporting period and have submitted to 
the Journal of Multivariate Analysis. We have significantly simplified the expression for our predictions of the 
principal components, and we have extended these to predict the behavior of the estimated singular values and 
right singular vectors. We have done an extensive comparison of our theory to classical high-dimensional PCA 
analysis approaches.



Another new direction for this work was to study whether low-rank matrices can be recovered even when all entries 
are transformed by an unknown monotonic function. This is common in problems such as recommender systems, 
where each individual’s quantization function is unknown, and calibration of sensor systems, where calibration of 
each sensor drifts over time. We developed a first-of-its-kind algorithm for this purpose and demonstrated its 
performance empirically. This work focused on the low-dimensional subspace model and for Goal 5 we extended 
that to other simple structures, including sparse and group sparse, using the atomic set framework.



Goal 2) Compressive measurements



We have made progress on convergence results for both the case of compressive measurements as well as 
stronger results for missing data. We also had the objective of unifying convergence results across missing data 
contexts. This work has been in the review process since September 2016. We are in the process of a major 
revision, and will be resubmitting soon to the SIAM journal of optimization. 



For undersampled data, we studied both missing data or compressively sampled data. Under mild conditions, we 
can prove that with high probability we have a unified convergence result as long as we have m > O(d log n) 
samples, where d is the subspace rank and n is the ambient dimension. These are impressive mathematical 
results, as the objective function of our formulation is nonconvex. We have also generalized the compressive 
measurement bounds considerably by considering sub-Gaussian measurement matrices in the case of subspace 
detection (not yet estimation). These are the first ever results for subspace learning that allow sub-Gaussian 
compressive operators, which are much more general than Gaussian compressive measurements.



We also considered compressive measurements for the subspace clustering problem. We showed that a Gaussian 
sketch is much better than directly subsampling, even with incoherent data, because it maximally separates the 
columns on the subsampled coordinates. This was previously unknown. 



Goal 3) l1 norm subspace estimation



During the project we also worked on streaming sparse PCA algorithms. We developed both a batch algorithm as 
well as the first stochastic gradient algorithm for estimating sparse principal components; the latter works from 
streaming data. We showed the performance in simulation and on environmental ozone data. They key for these 
algorithms is in choosing the step size, and further understanding of our successful step size schemes is for future 
work. 



Goal 4) Applications in CV and unification



We have applied our subspace tracking algorithms to the computer vision problems of structure from motion, face 
recognition, digit recognition, and motion segmentation in video. 



Our work has demonstrated a general framework connecting the Grassmannian methods to the incremental 
Singular Value Decomposition. We’ve also unified convergence rates across complete data, noisy data, and 
undersampled data for our Grassmannian subspace estimation algorithms. 






Goal 5) Novel nonlinear generalizations



We have begun study into three nonlinear models that are generalizations of the low-dimensional subspace model: 
Generalized Single Index Models, Variety Models, and the Union of Subspaces Model. Our specific objectives were 
to develop algorithms for learning these interesting nonlinear models from incomplete or undersampled 
measurements. Our Calibrated Single Index (CSI) algorithm for learning generalized single index models was 
published and presented in AAAI 2017. Our work on matrix completion with Variety Models was published in ICML 
2017. Finally our work on semi-supervised subspace clustering for the union of subspaces model was also 
published in ICML 2017. 



For Generalized SIMs, we developed the first ever algorithm to estimate a single index model in high dimensions. 
Our approach gave a highly flexible framework allowing many kinds of structure in the data (sparsity, group 
sparsity, low-rank structure for example) and arbitrary nonlinear monotonic transformations of the observations. 
Our algorithm outperforms other state-of-the-art approaches including simple neural networks that require a good 
deal more data and computation time. 



For variety models, the key observation in our work studying the variety model is that despite the data matrix being 
high-rank, when lifted using the polynomial kernel, this data matrix is low-rank. Therefore we can perform low-rank 
matrix completion in the lifted space (or without lifting if we use a kernelized algorithm). This algorithm is the first 
tractable algorithm that can handle estimation of the variety model with missing data. Our mathematical results 
include a bound on the rank of general varieties, and we also identified the specific bound for the union of 
subspaces model, both of which were previously unknown. 



Finally for the union of subspaces model, we developed a novel notion of margin for active learning of a subspace 
classifier, and this forms the basis of a new margin-based active learning algorithm. This algorithm was shown 
empirically to far outperform state-of-the-art algorithms in active classification for several computer vision datasets. 
For example, on the US Postal Service digits dataset, our algorithm achieves under 3% classification error with 
only 600 queries, whereas with 1000 queries the state-of-the-art algorithm has about 20% classification error.
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Training Opportunities:  Throughout the performance period of this grant, the students involved have had many 
professional development opportunities. This includes summer schools and workshops on topics related to the 
grant, poster presentations at the University of Michigan, conference attendance including poster presentations and 
oral presentations, and involvement with the Michigan statistical machine learning reading group. We have had 
undergraduate and MS students experience their first research project, and PhD students had the opportunity to 
mentor those younger students. 



Here I also list some specific opportunities that were supported at least in part by the grant. Dejiao Zhang 
presented her work at AI stats and ICASSP conferences and did a summer internship at Technicolor where she 
studied the union of subspaces model. John Lipor attended the Simons workshop for active learning in February 
and presented his work at IEEE CAMSAP and ICML. David Hong and Chenlan Wang attended the Midwest 
Machine Learning Workshop (first annual) and presented their work there. David Hong also presented his work at 
several on-campus University of Michigan symposia, and did a summer internship at Sandia national labs. John 
Lipor and David Hong presented their work at SPARS 2017 and were involved in the co-located Pulsar Information 
Processing workshop. All students were involved in the Michigan Statistical Machine Learning reading group.

Results Dissemination:  Our work was disseminated extensively by conference publication and presentation — 
Allerton conference, AAAI, ICASSP, SPARS, and ICML. We also have journal papers in submission to the Journal 
of Multivariate Analysis and SIAM Journal of Optimization. I also presented the active learning algorithm for union 
of subspaces data at the Simons workshop for Interactive Learning in February 2017. I gave several invited talks at 
universities, such as Johns Hopkins, Claremont McKenna, Colorado School of Mines, Toyota Technical Institute, 
and the University of Chicago. I also gave a seminar at the Air Force Research Lab in summer 2016. I gave a 
major seminar that covered most of the work from the ARO grant at the MICDE (Michigan Institute for 
Computational Discovery and Engineering) in April 2017. I gave a seminar specifically on our monotonic matrix 
completion results at the MIDAS (Michigan Institute for Data Science) seminar series in March 2017. Both these 
last two seminar series are interdisciplinary series that involve the entire Michigan campus.
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Honors and Awards:  In 2015 PI Balzano's research partially supported by ARO earned her the Intel Early Career 
Faculty Fellowship. 



David Hong's poster presentations won awards at the Michigan Institute of Data Science annual symposium 
(university wide), the Michigan Engineering Graduate Symposium (college of engineering wide), and the Michigan 
Student Symposium for Interdisciplinary Statistical Sciences (university wide). 



Chenlan Wang won the Rackham International Student Fellowship, a fellowship awarded by the University of 
Michigan graduate school. 



John Lipor is an NSF graduate research fellow. His travel and PI Balzano's support of his project were paid for by 
this ARO grant. He received a best paper honorable mention at CAMSAP 2015 for his work on active subspace 
clustering. John completed his dissertation in September 2017 and is continuing to a faculty position at Portland 
State University beginning January 2018.
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1 Statement of the Problem Studied and Major Goals

This proposal focused on subspace estimation in various modern big-data contexts, where data
are massive, streaming, time-varying, and have missing, corrupted, and ill-conditioned data. We
formulated our general problem as solving for U ∈ Rn×r and V ∈ RT×r to be a factored representa-
tion for a data matrix X ∈ Rn×T . H : Rn×T → Rm represents a linear measurement operator and
G(n, r) is the Grassmann manifold of rank-r subspaces of Rn, and we get the following non-convex
problem:

minimize
U∈Rn×r,V ∈RT×r

f(X,UV T ) = ‖H
(
X − UV T

)
‖2F (1)

subject to U ∈ G(n, r)

In this context we have continued working on our four main goals:

1. Algorithms and theory for estimating U when X is ill-conditioned, i.e., the first and rth

singular values have a large ratio, or when there is a low SNR, i.e., the (r+ 1) to nth singular
values are relatively large compared to the first r singular values. We also extended this
in two new directions: a) clusters of data with different SNR levels, and b) data that are
transformed by an unknown monotonic calibration function.

2. Theory for estimating U with the natural Grassmannian incremental gradient descent algo-
rithm when H is a compressive measurement operator.

3. Algorithms and theory for the problem variant where we minimize the `1-norm cost instead
of the Frobenius norm (robust PCA) or where we add a constraint that U should be sparse
(sparse PCA).

4. Applications in computer vision and Unifying convergence theory across these non-convex
problems.

2 Summary of the Most Important Results

During this reporting period we have made progress on theory for estimating U when the data
are heteroscedastic, and theory for estimating U from compressive measurements with the natural
Grassmannian incremental gradient descent. We have also moved into studying nonlinear models
more extensively after the results in Monotonic Matrix Completion from the last reporting period.
These problems have provided fascinating extensions of our work on subspaces, excellent application
in computer vision, and novel non-convex problem formulations of interest.

2.1 PCA estimates with heteroscedastic data

As in the last reporting period, we considered a new context wherein data from different sources
have different levels of noise (i.e., heteroscedastic data). Our goal in studying this problem was
simply understanding how a simple PCA approach behaves in this context. It was not initially
obvious how to use data from two sources with very different quality. What we learned is that,
actually, sometimes it is better to throw away the data with higher noise variance, even if it is the
larger quantity of data. However, when to do that depends on the relative portions of data as well
as the SNR. Our initial paper was presented at Allerton in September 2016 [1]. Since that work,
we have significantly simplified the expression for our predictions of the principal components, and
we have extended these to predict the behavior of the estimated singular values and right singular

2
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i,
u
i〉|

2

(a) Homoscedastic noise with σ2
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(b) Heteroscedastic noise with 80% at σ2
1 = 0.8 and

20% at σ2
2 = 1.8.

Figure 1: Asymptotic subspace recovery of the i-th principal component as a function of sample-
to-dimension ratio c and subspace amplitude θi with average noise variance equal to one. Contours
are overlaid in black. The phase transition in (b) is further right than in (a); more samples are
needed to recover the same strength signal.

vectors. We have a much deeper understanding of how the different noise variances and proportions
of points will affect the outcome of PCA, and we have done an extensive comparison of our theory
to classical high-dimensional PCA analysis approaches; all these new results can be found in our
preprint submitted to the Journal of Multivariate Analysis [2]. These extensions are now allowing
us to do new work designing a PCA weighting scheme to achieve the optimal performance.

2.2 Subspace tracking from compressive measurements

Subspace tracking Our previous work on the Grassmannian-descent subspace tracking algo-
rithm GROUSE (Grassmannian Rank-One Update Subspace Estimation) [3] focused on subspace
estimation with missing data. Prior work had proved local convergence [4] for Grassmannian es-
timation for subspace estimation with missing data. Besides global convergence results already
mentioned, we also had the goal to extend this to the more general undersampling framework of
compressive measurements. Since then, we have made progress on convergence results for both the
case of compressive measurements as well as stronger results for missing data. This work [5] has
been in the review process since September 2016. We are in the process of a major revision, and
will be resubmitting soon to the SIAM journal of optimization.

Undersampled noiseless data For undersampled data, we consider two typical cases, missing
data and compressively sampled data. When learning a d-dimensional subspace of RN , under mild
conditions, we can prove that with probability exceeding 1−nδd/2 (for some δ ∈ (0, 1)), the following
unified framework holds for both cases as long as we have m ≥ O(d log n) samples:

E
[
ζt+1

∣∣Ut] ≥ (1 + η
m

n

1− ζt
d

)
ζt (2)

where η ≈ 1 is slightly different for each sampling type [5].

Weighted Step Size Scheme for Noisy Data We also have worked on theoretical extensions

to noisy data. Given a parameter α, a weighted step size scheme θt = arctan
(

(1− α) ‖r‖‖p‖

)
, where

r is the subspace residual and p is the subspace projection, allows similar results for noisy data.
We restrict α ∈ [0, 1) with the goal that α→ 1 as the range of our estimate converges to the range
of the underlying true subspace; i.e., R(Ut) → R(Ū). The intuition behind this strategy is that

3



dataset SLR SQH SLS CSI Slisotron SLNN

link (d = 1840, n = 1051) 0.976 0.946 0.908 0.981 0.959 0.975
page (d = 3000, n = 1051) 0.987 0.912 0.941 0.997 0.937 0.999
ath-rel (d = 17785, n = 1427) 0.857 0.726 0.733 0.879 0.826 0.875
aut-mot (d = 16347, n = 1986) 0.916 0.837 0.796 0.941 0.914 0.923
cryp-ele (d = 22293, n = 1975) 0.960 0.912 0.834 0.990 0.910 0.994
mac-win (d = 7511, n = 1946) 0.636 0.615 0.639 0.646 0.616 0.649

Table 1: AUC values for various methods on several datasets. The entries in bold are the best
values.

the noisy part will gradually dominate ‖r‖, we hope to include less and less information from the
projection residual to our estimations as R(Ut)→ R(Ū).

Theorem 1. Suppose the entries of the additive noise vector ξt are independent and identically
distributed Gaussian random variables such that E

[
‖ξt‖2/‖vt‖2

∣∣vt] ≤ σ2, where vt is the signal

vector (so this lower bounds SNR). Then with probability at least 1 − nδ1d/2, for some δ1 ∈ (0, 1),
we obtain

E
[
ζt+1

∣∣Ut] ≥ (1 + η1
m

n

1− ζt
d

(
1− σ2

(1−ζt)
d + σ2

))
ζt (3)

Subspace detection and tracking from more general compressive measurements In-
spired by very recent and very powerful results in high-dimensional probability, this past year we
continued working on an extension of matched subspace detection with compressive measurements.
The exciting contribution here is that we are able to define a clean and simple subspace detector
with excellent guarantees for any sub-gaussian sampling matrix. This includes Bernoulli sampling,
sparse matrices, missing data, any bounded matrix measurement operator, and of course Gaussian
matrices as well. This work was presented at ICASSP in April 2017 and early results were described
in our last report.

Using these results, we have been working on making our subspace tracking results more general.
As we continue to generalize our results, we also work on demonstrating applications to more general
compressive and structured measurement operators.

2.3 Novel Nonlinear Generalizations

In this our final reporting period, we worked on several exciting new nonlinear generalizations that
formed the basis of our next grant proposal to ARO. While linear subspaces are useful for capturing
coarse structure in data, nonlinear models have the potential to perform more detailed inference.
However, nonlinear models can require much more data to estimate and how to estimate model
parameters with missing data is as yet not understood. We developed some exciting new results
for three nonlinear models: the generalized single index model, the algebraic variety model, and
the union of subspaces model.

2.3.1 Generalized Single Index Model

In our last reporting period, we discussed new work on Monotonic Matrix Completion. This work
uses the single index model to allow nonlinear modeling of low-rank matrix data. Since that time
we extended the work to allow more generalized sparse structures via the atomic set model [6],
including sparse, group-sparse, and low-rank models as examples. Our Calibrated Single Index
(CSI) algorithm was published and presented in AAAI 2017 [7].
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dataset SLR SQH SLS CSI Slisotron SLNN

link 0.954 0.966 0.946 0.973 0.914 0.939
page 0.947 0.947 0.931 0.977 0.925 0.962
ath-rel 0.687 0.696 0.598 0.771 0.726 0.794
aut-mot 0.801 0.795 0.542 0.858 0.812 0.855
cryp-ele 0.888 0.899 0.723 0.949 0.916 0.939
mac-win 0.605 0.615 0.630 0.632 0.579 0.590

Table 2: Classification accuracy for various methods and on several datasets. The entries in bold
are the best values.

These tables compare our method with several other algorithms, in various high dimensional
structural settings and on several datasets for standard sparse parameter recovery. We compare
CSI with the following algorithms

• Sparse classification with the logistic loss (SLR) and the squared hinge loss (SQH). We vary
the regularization parameter over {2−10, 2−9, · · · , 29, 210}. We used MATLAB code available
in the L1-General library1.

• Sparse regression using least squares SLS. We used a modified Frank Wolfe method [8]2, and
varied the regularizer over {2−5, 2−4, · · · , 219, 220}.

• Our method CSI. We varied the sparsity of the solution as {d/4, d/8, d/16, · · · , d/1024},
rounded off to the nearest integer, where d is the dimensionality of the data.

• Slisotron [9] which is an algorithm for learning SIMs in low-dimensions.

• Single layer feedforward NN (SLNN) trained using Tensorflow [10] and the Adam optimizer
[11]. We used the early stopping method and validated results over multiple epochs between
50 and 1000, and the number of hidden units were varied between 5 and 1000. The choice
of single layer and not multi-layer is motivated by the fact that an SLNN would provide the
fairest comparison to SIM.

We always perform a 50 − 25 − 25 train-validation-test split of the data, and report the results
on the test set. We tested the algorithms on several datasets: link and page are datasets from
the UCI machine learning repository. We also use four datasets from the 20 newsgroups corpus3:
atheism-religion, autos-motorcycle, cryptography-electronics and mac-windows. We compared the
AUC in Table (1) as well as the classification accuracy in Table (2) for each of the methods. The
following is a summary:

• CSI outperforms simple, widely popular learning algorithms such as SLR, SQH, SLS. Often,
the difference between CSI and these other algorithms is quite substantial. For example when
measuring accuracy, the difference between CSI and either SLR, SQH, SLS on all the datasets
is at least 2% and in many cases as large as 4− 5%.

1https://www.cs.ubc.ca/~schmidtm/Software/L1General.html
2http://www.cs.utexas.edu/~nikhilr/Code.html
3http://qwone.com/~jason/20Newsgroups/
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• CSI comfortably outperforms Slisotron on all datasets and often by a margin as large as
5− 6% on accuracy scale. This is expected because Slisotron does not enforce any structure
such as sparsity in its updates.

• The most interesting result is the comparison of CSI with SLNN. In spite of the simplicity
of the SIM and the proposed CSI algorithm, we see that our approach is comparable to and
often outperforms SLNN. This makes the CSI algorithm a valuable tool for practical data
analysis.

2.3.2 Variety Model

Algebraic varieties are a direct generalization of the linear subspace and allow for very interesting
nonlinear structures, some of which are illustrated in Figure 2. These nonlinear models can capture
interesting nonlinearity in the data, but until our work it was unknown whether they can be
recovered from partial measurements. This work was presented at ICML 2017 [12].
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Figure 2: Data belonging to algebraic varieties in R3. The original data is full rank, but a nonlinear
embedding of the matrix to a feature space consisting of monomials of degree at most d is low-rank
with rank R, indicating the data has few degrees of freedom.

The key observation in our work studying the variety model is that despite the data matrix being
high-rank, when lifted using the polynomial kernel, this data matrix is low-rank. Therefore we can
perform low-rank matrix completion in the lifted space (or without lifting if we use a kernelized
algorithm). We showed a bound on the rank of general varieties, and we also identified the specific
bound for the union of subspaces model. If X is the original data matrix, we denote the lifted
matrix using a degree d polynomial kernel as φd(X).

Theorem 2. If the columns of a matrix Xn×s belong to a union of k affine subspaces each of
dimension at most r, then

rankφd(X) ≤ k
(
r + d

d

)
, for all d ≥ 1. (4)

Using this result and a back-of-the-envelope calculation, we saw that the number of samples per
columnm should bem ≈ O(k

1
d r). This approximation played out well in numerical experiments [12]

in both synthetic and real computer vision data.

2.3.3 Union of Subspaces Model

We have done extensive work estimating the union of subspaces model, and our most exciting
accomplishment in this reporting period was a novel semi-supervised clustering algorithm for the
union of subspaces data model.
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Figure 3: Illustration of subspace margin. The blue and red lines are the generative subspaces,
with corresponding disjoint decision regions. The yellow-green color shows the region within some
margin of the decision boundary, given by the dotted lines.
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Figure 4: Diagram of SUPERPAC algorithm for pairwise constrained clustering.

In our work published and presented at ICML [13], we defined a new notion of margin that
applies to data classified by subspace. The point of minimum margin is one equidistant to its two
closest subspaces. This notion is illustrated in Figure 3, where the yellow-green color shows the
region within some margin of the decision boundary. This new notion of margin allowed us to
develop a new semi-supervised active learning algorithm to classify and cluster points by nearest
subspace. The algorithm is illustrated in Figure 4. It actively selects a test point to query for a
label, which in this case comes in the form of a pairwise comparison instead of a direct class label.
Experimental results for this algorithm, which we called SUPERPAC (SUbsPace clustERing with
Pairwise Active Constraints), were phenomenal. SUPERPAC significantly outperforms the state
of the art algorithms. These results are showin Figure 5, where we can see that SUPERPAC uses
easily less than half of the queries of the best known algorithm URASC (Uncertainty Reducing
Active Spectral Clustering) to get nearly perfect clustering.

3 Future Work

Low-dimensional modeling of high-dimensional data under sensing and computational constraints
constitutes a fundamental modern statistical signal processing challenge. Our work in this ARO
funded research has focused on linear low-dimensional modeling with linear measurements. These
models are prevalent in data science and have deep and extensive mathematical foundations that
have allowed centuries of progress, and with our past three years we have made great progress
on understanding linear models more deeply. However, linear models are limited in their ability
to describe interesting nonlinearities in signals and measurements that are often highly relevant
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Figure 5: Misclassification rate for Yale B and MNIST datasets with many pairwise comparisons.
Left-to-right: Yale B K = 5 (input from SSC), Yale B K = 10 (input from SSC), MNIST K = 5
(input from TSC), MNIST K = 10 (input from TSC).

for decision making based on collected data. On the other hand, nonlinear generalizations are
often problem-specific, requiring distinct mathematical tools for addressing the technical issues of
applying each nonlinear model.

We proposed a new research project to ARO that will focus on broader generalizations to
nonlinear signal and measurement models, developing the foundational mathematics, algorithms,
and algorithmic theory for identifying these models in high dimensions. The next research projects
will focus on (1) Correlation and nonlinearities in the measurement system: measurements are
often modeled as a linear operator applied to the true signal of interest, with subsampling or
compression modeled as random and independent. However, many real measurement systems have
nonlinearities and correlation that cannot be accurately removed a priori. (2) Algebraic variety
models for relationships in the data, building off our work in Section 2.3.2. (3) Atomic set models
with nonlinear measurements, building off our work in Section 2.3.1.
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